Self-administration of subcutaneous rozanolixizumab in patients with generalized myasthenia gravis: Clinical study design

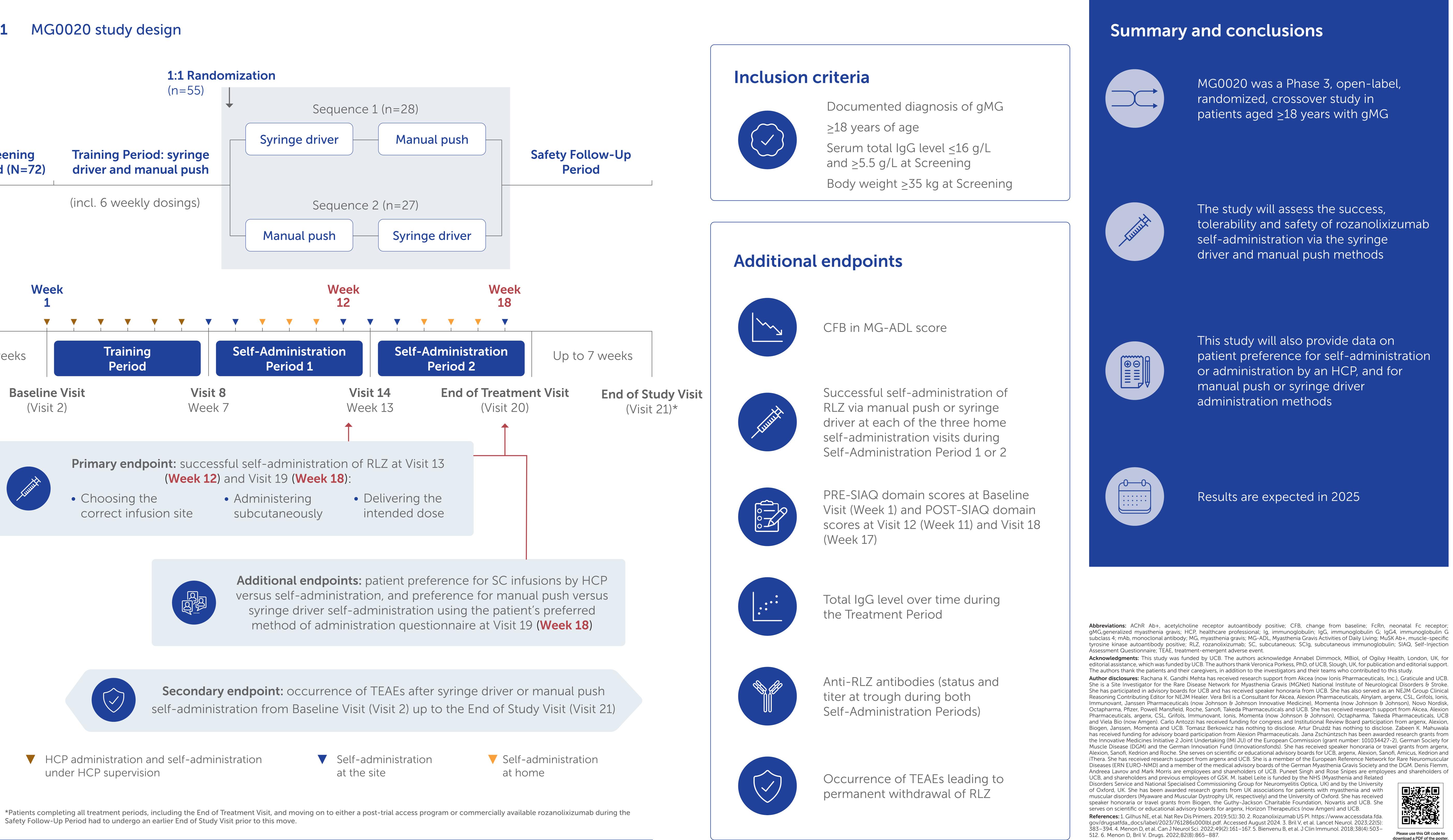
AANEM Annual Meeting & MGFA Scientific Session; Savannah, GA, USA; October 15–18, 2024

Introduction

- gMG is a rare, chronic autoimmune disorder affecting the neuromuscular junction, characterized by fluctuating muscle weakness and fatigue¹
- Several factors are understood to be drivers of gMG disease pathology, including pathogenic IgG autoantibodies, which can inhibit synaptic transmission at the neuromuscular junction by targeting specific proteins in the post-synaptic motor end plate¹
- Rozanolixizumab is a humanized IgG4 mAb FcRn inhibitor indicated for the treatment of adults with AChR Ab+ or MuSK Ab+ gMG²
- Treatment with rozanolixizumab targets the IgG binding region of the FcRn; binding inhibits IgG salvage and recycling, accelerating IgG catabolism and, ultimately, reduces the concentration of circulating IgG^3
- In the Phase 3, randomized, placebo-controlled, double-blind MycarinG study (MG0003/NCT03971422), one 6-week cycle of rozanolixizumab was generally well tolerated and provided clinically meaningful improvements in MG-specific outcomes³

Study rationale

- Self-administered SC treatment offers many advantages such as high patient satisfaction, sense of control, and increased independence owing to the fact that patients do not need to attend regular clinic visits⁴
- Currently, rozanolixizumab is administered by HCPs as an SC infusion once weekly for 6 weeks using programmable syringe drivers²
- However, there is interest in providing options for patients to self-administer rozanolixizumab. Programmable syringe drivers and manual push are two potential methods for self-administration of rozanolixizumab⁵
- Successful self-administration of SC treatment has been demonstrated in patients with gMG using Ig⁶
- While the syringe driver and manual push methods both provide independence from HCP administration, the manual push method is simpler and expected to reduce infusion times. In a study of SCIg self-administration methods, faster infusion rates were seen with manual push compared with syringe driver⁵
- The objective of the MG0020 study was to:
- Assess the success, safety and tolerability of rozanolixizumab self-administration Evaluate patients' preferred method of rozanolixizumab administration
- Assess patients' experiences with self-administration of SC infusions at home
- An open-label design was required as the study evaluated self-administration
- A crossover design was used to allow each study participant to evaluate both methods of self-administration


Study design

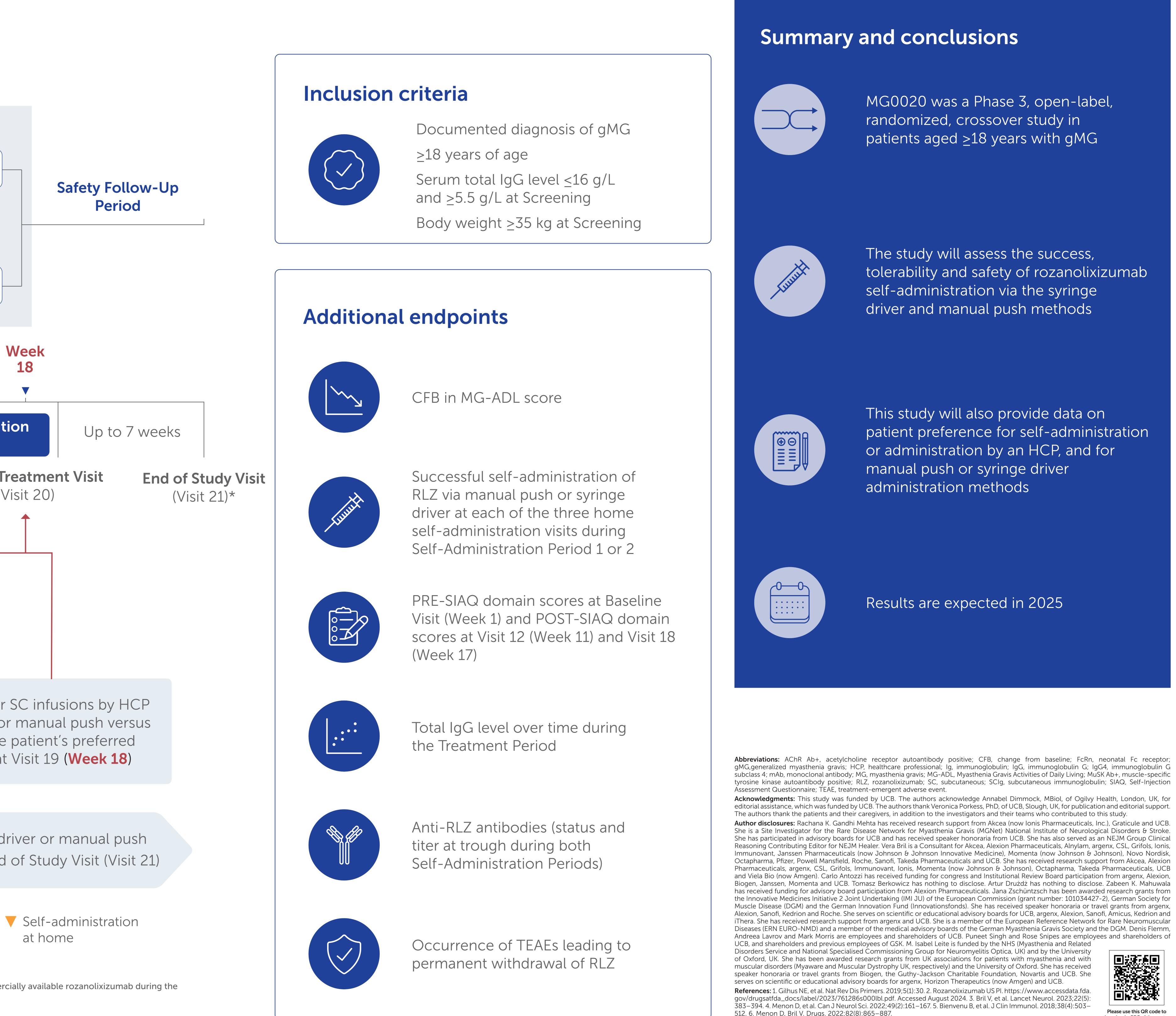

- In total, 72 patients were screened
- Patients received rozanolixizumab once weekly for 18 consecutive weeks (**Figure 1**) including:
- A 6-week Training Period in the two self-administration methods
- Two 6-week Self-Administration Periods, with supervised visits at clinic and unsupervised at home
- Following the Training Period, 55 patients were randomized 1:1 to the syringe driver or manual push self-administration method, subsequently crossing over to the alternative method
- The study included a Safety Follow-Up Period of up to 7 weeks
- The primary endpoint was successful self-administration of rozanolixizumab by syringe driver and manual push, evaluated by an HCP at the end of each 6-week Self-Administration Period (Weeks 12 and 18), which was defined as:
- Choosing the correct infusion site
- Administering subcutaneously
- Delivering the intended dose
- Secondary endpoints were occurrence of TEAEs, local site reactions and medication errors associated with adverse reactions
- Additional endpoints included patient preference for self-administration versus administration by an HCP, and for manual push versus syringe driver administration methods, pre- and post-SIAQ domain scores, CFB in MG-ADL score and total IgG level during the study

Figure 1

Screening Period (N=72)

4 weeks

Rachana K. Gandhi Mehta¹, Vera Bril², Carlo Antozzi³, Tomasz Berkowicz⁴, Artur Drużdż⁵, Zabeen K. Mahuwala⁶, Jana Zschüntzsch⁷, Denis Flemm⁸, Andreea Lavrov⁸, Mark Morris⁹, Puneet Singh⁹, Rose Snipes¹⁰ and M. Isabel Leite¹¹, on behalf of the MG0020 study team

¹Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; ²University Health Network, Toronto, ON, Canada; ³Neuroimmunology and Muscle Pathology Unit, Multiple Sclerosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale Neurologico Carlo Besta, Milan, Italy; ⁴Miejskie Centrum Medyczne im. dr. Karola Jonschera w Łodzi, Łódź, Poland; ⁵Department of Neurology, Municipal Hospital, Poznań, Poland; ⁶Department of Neuromuscular Medicine, Epilepsy and Clinical Neurophysiology, University of Kentucky, Lexington, KY, USA; ⁷Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; ⁸UCB, Monheim, Germany; ⁹UCB, Slough, UK; ¹⁰UCB, Morrisville, NC, USA; ¹¹Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK