Concomitant use of zilucoplan with intravenous immunoglobulin or plasma exchange during **RAISE and RAISE-XT**

AANEM & MGFA Scientific Session; Savannah, GA, USA; October 15–18, 2024

Introduction

- Patients with MG may experience symptom exacerbations that require rescue therapy with IVIg or PLEX¹
- After rescue therapy, those receiving treatment with monoclonal antibody complement C5 inhibitors require supplemental dosing^{2,3}
- Zilucoplan is a small, 15-amino acid macrocyclic peptide complement C5 inhibitor approved for the treatment of adults with AChR Ab+ gMG⁴
- Here, we evaluate the impact of rescue therapy (IVIg or PLEX) on zilucoplan concentration and complement inhibition in patients enrolled in the Phase 3 RAISE (NCT04115293) and RAISE-XT (NCT04225871) studies

Methods

- The Phase 3 RAISE study was a double-blind, placebo-controlled study of zilucoplan in which patients aged 18–74 years with MGFA Disease Class II–IV AChR Ab+ gMG, an MG-ADL score \geq 6 and a QMG score \geq 12 were randomized 1:1 to once-daily subcutaneous zilucoplan 0.3 mg/kg or placebo for 12 weeks
- Patients completing RAISE (or the qualifying Phase 2 study [NCT03315130]) could enter the ongoing RAISE-XT OLE study (data cutoff: September 8, 2022) to receive once-daily zilucoplan 0.3 mg/kg
- The primary safety endpoint of RAISE-XT was the incidence of TEAEs
- During the Phase 2 study, RAISE, and RAISE-XT, patients could receive concomitant IVIg or PLEX treatment as rescue therapy if, per the investigator's judgment, escalation of gMG therapy became necessary
- PK and PD analyses were carried out *post hoc* for patients with >1 week of exposure to zilucoplan 0.3 mg/kg across RAISE and RAISE-XT
- No patients receiving zilucoplan 0.3 mg/kg in the Phase 2 study received rescue therapy
- When rescue therapy was administered, zilucoplan dosing was held until after administration of rescue therapy and PK/PD sampling
- Zilucoplan plasma concentration was measured pre- and post-rescue therapy by liquid chromatography-tandem mass spectrometry on the day of rescue and compared to the estimated zilucoplan plasma concentration of 4.45 mg/L at which patients were expected to achieve complete complement inhibition (>95%)⁵
- Complement activity was measured pre- and post-rescue by sRBC lysis assay
- Blood samples for PK and PD analyses were taken within 1 hour prior to administration of rescue therapy; samples for PK analysis were also taken within 1 hour after administration of rescue, with the post-rescue measurement for PD analysis taken up to 1 day after rescue

Results

- Patients
- and RAISE-XT
- 1.2 (0.11–4.45) years
- IVIg and PLEX
- post-rescue data:

PK and PD analyses

Safety

 Only rescue events with both a pre- and post-rescue zilucoplan concentration or sRBC lysis measurement were included in the PK or PD analyses, respectively

All analyses were descriptive

• A broad gMG population with mild-to-severe disease as per MGFA disease classification was enrolled across RAISE

• Median (range) exposure to zilucoplan in RAISE-XT was

• Among patients with ≥ 1 week of exposure to zilucoplan 0.3 mg/kg across RAISE and RAISE-XT (N=200), 21 (10.5%) patients received IVIg and 10 (5.0%) patients received PLEX rescue therapy, including one patient who received both

• Across these 30 patients, there were a total of 60 IVIg and 22 PLEX rescue events from which the PK and PD cohorts were defined based on the availability of pre- and

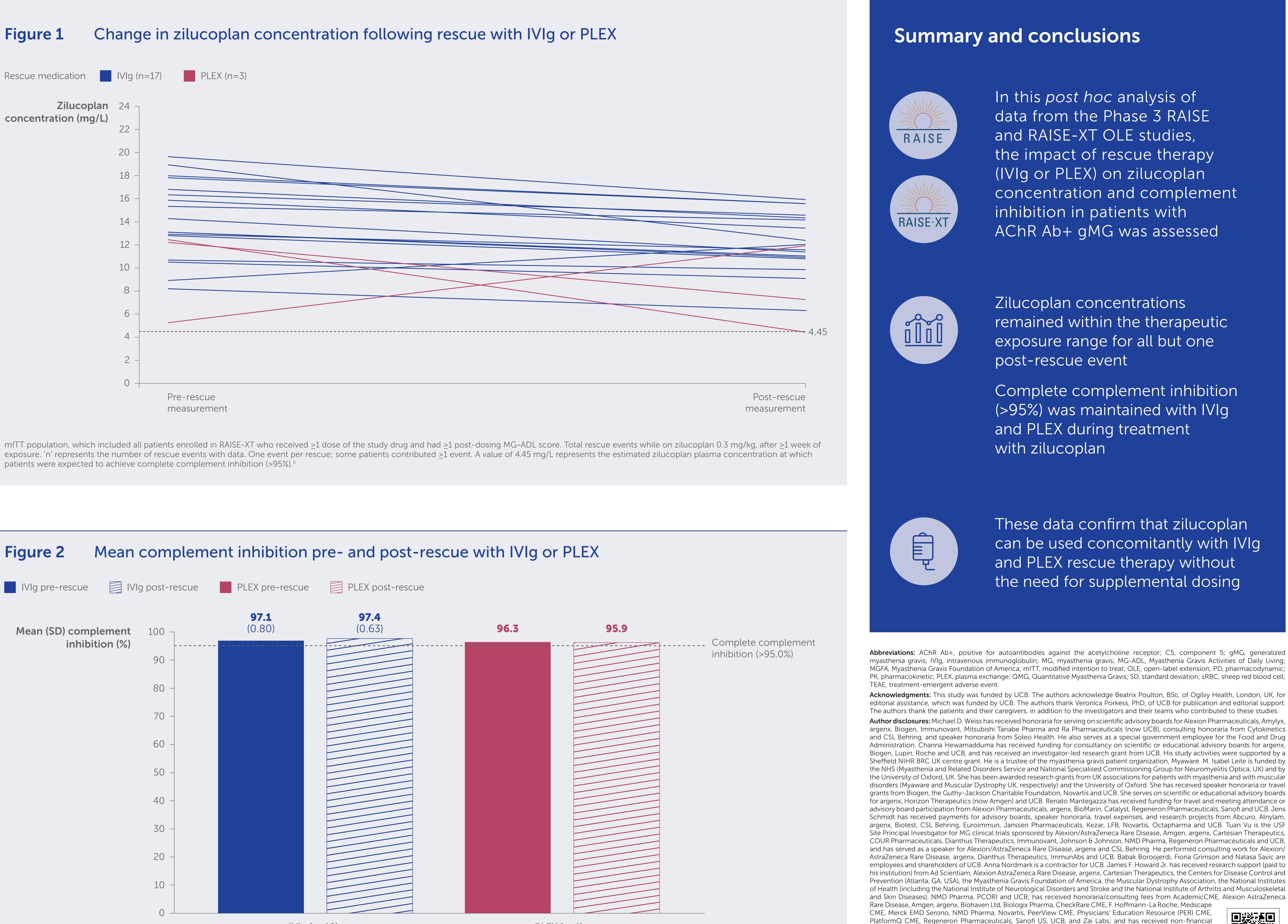
- PK cohort: n=17 and n=3 rescue events, respectively

PD cohort: n=10 and n=1 rescue event(s), respectively

• All IVIg rescue events (n=17/17) and two of three PLEX rescue events had pre- and post-zilucoplan concentrations within the therapeutic exposure range (above 4.45 mg/L; Figure 1)

– The third PLEX rescue event had a post-rescue zilucoplan concentration just below 4.45 mg/L (4.39 mg/L)

• Mean complement inhibition remained complete (>95%) pre- and post-rescue therapy in all patients (Figure 2):


- 97.1% and 97.4% for IVIg events, respectively

- 96.3% and 95.9% for PLEX events, respectively

• In RAISE-XT, TEAEs occurred in 188/200 (94.0%) patients

– The most common TEAEs occurring in \geq 15% of patients overall were MG worsening (n=52 [26.0%]), COVID-19 (n=49 [24.5%]), headache (n=35 [17.5%]), diarrhea (n=30 [15.0%]) and nasopharyngitis (n=30 [15.0%])

 In total, 64/200 (32.0%) patients experienced a serious TEAE; two (1.0%) were considered treatment related (esophagitis [n=1] and injection-site infection [n=1])

	-
IVIg pre-rescue	g post-rescue
Mean (SD) complement inhibition (%)	100
	90 -
	80 -
	70 –
	60 -
	50 -
	40 -
	30 -
	20 –
	10 -
	0

mITT population. Total rescue events while on zilucoplan 0.3 mg/kg, after >1 week of exposure. 'n' represents the number of rescue events with data. One event per rescue; some patients contributed >1 event.

Michael D. Weiss¹, Channa Hewamadduma^{2,3}, M. Isabel Leite⁴, Renato Mantegazza⁵, Jens Schmidt⁶, Tuan Vu⁷, Babak Boroojerdi⁸, Fiona Grimson⁹, Anna Nordmark¹⁰, Natasa Savic¹¹, and James F. Howard Jr.¹², on behalf of the RAISE and RAISE-XT study teams

¹Department of Neurology, University of Washington Medical Center, Seattle, WA, USA; ²Academic Neuroscience Unit, Sheffield Institute for Translational Neurosciences (SITraN), University of Sheffield, Sheffield, Sheffield, UK; ³Sheffield Institute for Translational Neurosciences (SITraN), University of Sheffield, Sheffield UK; ⁴Nuffield Department of Clinical Neurosciences, University of Oxford, UK; ⁵Department of Neurologico Carlo Besta, Milan, Italy; ⁶Department of Neurology and Pain Therapy, Immanuel Clinic Rüdersdorf, University Hospital Brandenburg Medical School, Berlin, Germany; ⁹UCB, Slough, UK; ¹⁰UCB, Stockholm, Sweden; ¹¹UCB, Bulle, Switzerland; ¹²Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

IVIg (n=10)

PLEX (n=1)

References: 1. Gilhus NE, et al. Nat Rev Dis Primers. 2019;5(1):30. 2. Eculizumab US PI. https://www.accessdata fda.gov/drugsatfda_docs/label/2017/125166s422lbl.pdf. Accessed August 2024. 3. Ravulizumab US PI. https:// alexion.com/documents/ultomiris_uspi. Accessed August 2024. 4. Zilucoplan US PI. https://www.ucb-usa.com/ zilbrysq-prescribing-information.pdf. Accessed August 2024. 5. Zilucoplan EU SmPC. https://www.ema.europa. eu/en/documents/product-information/zilbrysq-epar-product-information_en.pdf. Accessed August 2024.

support from Alexion AstraZeneca Rare Disease, argenx, Biohaven Ltd, Toleranzia AB and UCB.

Please use this QR code to download a PDF of the poster.